Galois Corings and a Jacobson-Bourbaki type Correspondence

نویسندگان

  • J. Cuadra
  • J. Gómez-Torrecillas
چکیده

The Jacobson-Bourbaki Theorem for division rings was formulated in terms of corings by Sweedler in [14]. Finiteness conditions hypotheses are not required in this new approach. In this paper we extend Sweedler’s result to simple artinian rings using a particular class of corings, comatrix corings. A Jacobson-Bourbaki like correspondence for simple artinian rings is then obtained by duality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comatrix Corings and Galois Comodules over firm rings

Galois corings with a group-like element [4] provide a neat framework to understand the analogies between several theories like the Faithfully Flat Descent for (noncommutative) ring extensions [26], Hopf-Galois algebra extensions [27], or noncommutative Galois algebra extensions [23, 15]. A Galois coring is isomorphic in a canonical way to the Sweedler’s canonical coring A ⊗B A associated to a ...

متن کامل

Comonads and Galois Corings

The notion of a coring was introduced by M. E. Sweedler in [20] with the objective of formulating and proving a predual to the Jacobson-Bourbaki theorem for extensions of division rings. A fundamental argument in [20] is the following: given division rings E ⊆ A, each coideal J of the A–coring A ⊗E A gives rise to a factor coring C = A ⊗E A/J . If g ∈ C denotes the group-like element 1 ⊗E 1 + J...

متن کامل

Finite depth and Jacobson–Bourbaki correspondence

We introduce a notion of depth three tower C ⊆ B ⊆ A with depth two ring extension A|B being the case B = C . If A = End BC and B|C is a Frobenius extension with A|B|C depth three, then A|C is depth two. If A, B and C correspond to a tower G > H > K via group algebras over a base ring F , the depth three condition is the condition that K has normal closure KG contained in H . For a depth three ...

متن کامل

Galois corings from the descent theory point of view

We introduce Galois corings, and give a survey of properties that have been obtained so far. The Definition is motivated using descent theory, and we show that classical Galois theory, Hopf-Galois theory and coalgebra Galois theory can be obtained as a special case.

متن کامل

Galois Corings Applied to Partial Galois Theory

Partial Galois extensions were recently introduced by Doku-chaev, Ferrero and Paques. We introduce partial Galois extensions for noncommutative rings, using the theory of Galois corings. We associate a Morita context to a partial action on a ring.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005